
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/320443035

M/G/1	queue	with	event-dependent	arrival
rates

Article		in		Queueing	Systems	·	October	2017

DOI:	10.1007/s11134-017-9557-7

CITATIONS

0

READS

4

1	author:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Routing	in	queue	with	abandonments	View	project

Reservation	Strategy	View	project

Benjamin	Legros

Ecole	Centrale	Paris

21	PUBLICATIONS			26	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Benjamin	Legros	on	17	October	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/320443035_MG1_queue_with_event-dependent_arrival_rates?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320443035_MG1_queue_with_event-dependent_arrival_rates?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Routing-in-queue-with-abandonments?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reservation-Strategy?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Legros2?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Legros2?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_Centrale_Paris?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Legros2?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Legros2?enrichId=rgreq-1dc2a9326ae85b62604588dd82ca6143-XXX&enrichSource=Y292ZXJQYWdlOzMyMDQ0MzAzNTtBUzo1NTAzMTQ0NzI2MDc3NDRAMTUwODIxNjYwMjA0NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Noname manuscript No.
(will be inserted by the editor)

M/G/1 queue with event-dependent arrival rates

Benjamin Legros

the date of receipt and acceptance should be inserted later

Abstract Motivated by experiments on customers’ behavior in service systems, we consider a queueing

model with event-dependent arrival rates. Customers’ arrival rates depend on the last event which may

either be a service departure or an arrival. We derive explicitly the performance measures and analyze the

impact of the event-dependency. In particular, we show that this queueing model, in which a service com-

pletion generates a higher arrival rate than an arrival, performs better than a system in which customers

are insensitive to the last event. Moreover, contrary to the M/G/1 queue, we show that the coefficient of

variation of the service does not necessarily deteriorate the system performance. Next, we show that this

queueing model may be the result of customer’s strategic behavior when only the last event is known. Finally,

we investigate the historical admission control problem. We show that under certain conditions a determin-

istic policy with two thresholds may be optimal. This new policy is easy to implement and provides an

improvement compared to the classical one-threshold policy.

Keywords queueing systems · performance evaluation · M/G/1 · threshold policy · strategic behavior

Mathematics Subject Classification (2000) 90B22 · 60K25 · 68M20

1 Introduction

Context and motivation. In many service settings, customers encounter queues and have to decide between

joining or balking. For instance in a theme park, the decision to join a queue for an attraction may depend

on the queue length but also on the possible entertainment that this attraction could offer. In practice, a

quick observation of the queue influences customers about the utility to join or not. In particular, the last

realized event often has an important impact on their decisions. A too high importance given to the last
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realized event may however bias customers’ decisions by inducing illusory correlation. For instance, if the

last event was a service then a reduction of the queue size is observed. This event is either irrelevant or at

least insufficient to evaluate the quality of the queueing system. Yet, one can conclude that this queue has a

high speed of service since a customer has just left service. Another bias is to believe that a positive event is

usually followed by negative ones. In this case, a customer may believe that since a service completion has

just occurred, the next service times will be long.

Although the last observed event is not a rational indicator of the quality of a service system, [1] showed

that the evolution of the queue size (increasing or decreasing) due to service completions or arrivals impacts

strongly the decision of new arriving customers, by using laboratory experiments in which participants

experience several observable queues with different characteristics in terms of queue length and service

times.

Queues with workload-dependent arrival or service rates have already been widely studied. Therefore, we

aim to investigate a queue with another feature for the customers’ behavior which is the event-dependency.

In order to analyze the impact of this new feature, we neglect the other aspects of customer’s behavior like

the workload sensitivity. To the best of our knowledge, this paper is the first to model this behavior. In what

follows we describe the queueing model studied in this article.

Model description. We consider a single-server first-come-first-served queueing model with a general service

time distribution. We assume that the iid service times have a density, denoted by g. We denote by x the

expected service time and by cv the coefficient of variation of the service time distribution; it is the ratio of

the standard deviation divided by the expected value. Based on the last event which can either be an arrival

or a service completion, the feature of the event-dependency is captured through two exponential arrival

rates; λ+ and λ−. More precisely, at a given time, if the last event was an arrival (respectively a service),

the next customer will arrive in the system after a random time exponentially distributed with parameter

λ+ (respectively λ−).

Contributions. The key contributions of this paper are the following.

– Performance Analysis. First, we consider the embedded Markov chain right after a service completion.

This allows us to derive the probability generating function explicitly together with the stability condition

and the probability of an empty system at departure instants. Contrary to the M/G/1 queue, the queue

length distribution is not identical at arrival and arbitrary instants. Therefore, we also study the relation

between these distributions. This leads to explicit expressions of the performance measures at arbitrary

instants. Next, we consider three special cases of service time distributions (Exponential, Erlang and

Deterministic). We show that our queueing model performs better than a system in which customers are

insensitive to the last event if a service generates a higher arrival rate than an arrival (λ− > λ+). Contrary
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to the M/G/1 queue, we show that the performance of our model can improve when the coefficient of

variation of the service increases.

– Equilibrium Strategy. We next question if the event-dependency of the arrival rates can be the result

of a rational strategy when customers only know the last realized event. For this purpose, we study the

remaining service time distribution for an arriving customer given the last event. Next, we derive the

expected waiting time of customers who arrive after an arrival and the one of customers who arrive

after a service. We prove that the first one is always higher than the second one. Given a non-empty

queue, a necessary and sufficient condition which involves the variability of the service time determines

the comparison between the expected waiting times. As a conclusion, we show that λ− ≥ λ+ can be the

result of a strategic behavior.

– Admission Control Problem. We investigate the historical admission control problem with event-

dependency. A controller has to determine at the arrival of a customer whether to let this customer enter

the queue or to reject this customer. The decision is based on the number of customers present in the

system, the distribution of the remaining service time and the last realized event. The objective is to

maximize the throughput of served customers with a service level constraint on the expected number

of customers in the system. A two-thresholds policy depending on the last realized event and on the

remaining service time of the customer in service is the only possible deterministic policy. Using a Markov

decision process approach and approximating the service time distribution by a Coxian distribution

allows us to find necessary conditions under which a deterministic threshold type policy is optimal.

These conditions are that λ− ≥ λ+ and that the departure rate out of each service phase of the Coxian

distribution is decreasing in the number of remaining service phases. The relation between the optimal

thresholds and the remaning service time might make the optimal policy complicate to implement in

practice. We then propose a simplified version of this policy where the two thresholds depend only on

the number of customers in the system. We finally develop an exact numerical method to obtain the

performance measures under this policy at arbitrary instants and show that this policy outperforms the

classical one-threshold policy.

The remainder of this paper is structured as follows. We conclude this section with a literature survey. In

Section 2, we compute the performance measures and investigate the impact of the event-dependent arrival

rates. In Section 3, we prove that the case λ− ≥ λ+ may be the result of a strategic behavior. In Section 4,

we investigate the admission control problem. Finally, Section 5 opens on future research perspectives. The

notations used are summarized at the end of the article.

Literature Review. Methodologically, the analysis of this paper is related to (i) queues with general service

and state definition based on the residual service time [15, 28, 8], (ii) queueing systems with phase-type

service time distributions [24] and (iii) Markov decision process approach [18].
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A stream of literature related to this paper is that of queueing systems with state-dependent parameters.

Single-server queues with workload-dependent arrival or service rates have been widely analyzed (e.g. see

[15, 5, 9, 11]). Historically, Markovian models with general release rule have been considered as dam processes.

Later, another application came in packet-switched communication systems; the transmission rate of data

connections can also be adapted based on the queue size. Other single-server queueing models have been

proposed where the arrival or the service rates are depending on the waiting time of the customer in service

[10, 31], the waiting time of the first customer in line [6], or on the remaining service time [21]. Other

examples with workload dependent resources can be found via the slow server problem. With two servers (a

slow and a fast one) [19], [22], [30], and [17] show that the fast server should be always used, and the slow

server should be only used when the fast server is busy and the number of customers waiting in the queue

exceeds a given threshold. Extension of these studies for more than two servers can be found in [20], [26]

and [23]. Our paper differs from these papers since the arrival-dependency is based on the last event instead

of the observed workload or realized waiting time.

2 Performance Analysis

We investigate the impact of an event-dependent arrival process on the performance measures. In Section

2.1 we consider the embedded Markov chain right after a service completion. This approach, in line with the

standard analysis of the M/G/1 queue, allows us to obtain explicitly the probability generating function.

Contrary to the M/G/1 queue, the queue length distribution is not identical at arrival and arbitrary instants.

Therefore, in Section 2.2 we study the relation between these distributions in order to reach the performance

measures at arbitrary instants. Finally in Section 2.3, we apply our results to particular service time distri-

butions (Exponential, Erlang and Deterministic) to better understand the effect of the event-dependency of

the arrival process. An alternative method to obtain the performance measures with a state definition based

on the remaining service time is proposed in Section 1 of the online supplement.

2.1 The embedded Markov chain at service completion instants

Consider the system just after a customer has completed a service. The random variable Xi represents the

number of customers remaining in the system as the ith customer departs. We can write that

Xi+1 =

{
Xi − 1 +Ai+1, if Xi > 0,

Ai+1, if Xi = 0,
(1)

where Ai+1 is the number of customer who arrived during the service time of the (i + 1)st customer. The

service time of the (i+ 1)st customer is independent of previous service times and the length of the queue,

4



so we can denote by S this random variable without mentioning the index of the (i+1)st customer. We now

evaluate the distribution of Ai+1. Two cases should be considered.

Case 1. If Xi > 0, the service initiation time of Customer i+1 is the service completion time of Customer

i. Therefore, the last event for the first customer who arrives during the service of Customer i+1 is a service.

It is an arrival for all the other customers. Let us denote by Nt the number of customers who arrive during

a service of length t. The distribution of Nt is given by the following set of differential equations:
P (N0 = 0) = 1,
dP (Nt=0)

dt = −λ−P (Nt = 0),
dP (Nt=1)

dt = −λ+P (Nt = 1) + λ−P (Nt = 0),
dP (Nt=n)

dt = −λ+P (Nt = n) + λ+P (Nt = n− 1), for n ≥ 2.

(2)

After some algebra, we obtain the solution of this system. It is given by P (Nt = 0) = e−λ−t, and

P (Nt = n) =
λ−

λ+ − λ−

(
λ+

λ+ − λ−

)n−1
(
e−λ−t − e−λ+t

n−1∑
k=0

((λ+ − λ−)t)k

k!

)
,

for n ≥ 1. This arrival process is a modified Poisson process where the first interarrival time follows a different

distribution than the other interarrival times. Given that Xi > 0, the number of customers who arrive during

the service of the (i+ 1)st customer is independent of the index i. We therefore simply denote this random

variable by A. We hence have

P (Ai+1 = n|Xi > 0) = P (A = n) =

∫ ∞

0

P (Nt = n)g(t) dt = αn,

for i, n ≥ 0.

Case 2. If Xi = 0, the service initiation of Customer i+1 is the arrival time of Customer i+1. Therefore,

the last event for all customers who arrive during the service of Customer i+1 is an arrival. Thus, the number

of customer’s arrivals during a service of length t given Xi = 0 follows a Poisson process with rate λ+t and

is independent of the index i. We then denote by B the random variable which represents the number of

customers who arrive during the service of Customer i+ 1 given that Xi = 0. We may write

P (Ai+1 = n|Xi = 0) = P (B = n) =

∫ ∞

0

e−λ+t (λ
+t)n

n!
g(t) dt = βn,

for i, n ≥ 0. This corresponds to the transition probabilities in the embedded Markov chain of an M/G/1

queue.

As a conclusion Equation (1) can be simplified into

Xi+1 =

{
Xi − 1 +A, if Xi > 0, and,

B, if Xi = 0.
(3)
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The definition of the process in Equation (3) allows us to define a discrete time Markov chain. The related

matrix of transition probabilities is given by

M =



β0 β1 β2 β3 β4 · · ·
α0 α1 α2 α3 α4 · · ·
0 α0 α1 α2 α3 · · ·
0 0 α0 α1 α2 · · ·

0 0
. . .

. . .
. . .

. . .


.

Assuming that steady state is reached, we let pn represent the stationary probability that n customers are

in the system at a service departure instant. We now define the generating functions

P (z) =
∞∑

n=0

pnz
n, A(z) =

∞∑
n=0

αnz
n, B(z) =

∞∑
n=0

βnz
n, (4)

for |z| ≤ 1. In Theorem 1, we derive P (z) and p0. In addition, we give the condition of existence of P (z).

This condition is also the condition which ensures the stationary regime.

Theorem 1 Under the stability condition x < 1
λ− (1−G∗(λ−)) + 1

λ+G
∗(λ−), we have

P (z) = p0
(1− z) ((λ+ − λ−)G∗(λ−)− λ+zG∗(λ+ − λ+z))

(1− z) ((λ+ − λ−)G∗(λ−)− λ+z) + λ−z(1−G∗(λ+ − λ+z))
,

with

p0 =
λ+(1− xλ−) + (λ− − λ+)G∗(λ−)

λ+ + (λ− − λ+)G∗(λ−)
.

Proof. The vector (p0, p1, · · · ) is solution of (p0, p1, · · · ) = (p0, p1, · · · )×M . Therefore, we have

p0 = β0p0 + α0p1,

p1z = β1p0z + α1p1z + α0p2z,

p2z
2 = β2p0z

2 + α2p1z
2 + α1p2z

2 + α0p3z
2,

...

pnz
n = βnp0z

n + αnp1z
n + αn−1p2z

n + · · ·+ α0pn+1z
n,

...

By summing up these equations, we get P (z) = p0B(z) +A(z)(p1 + p2z + p3z
2 + · · · ). This leads to P (z) =

p0B(z) + A(z)
z (P (z)− p0). Finally, we deduce that

P (z) = p0
A(z)− zB(z)

A(z)− z
. (5)
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Using L’Hôpital’s rule, we obtain

P (1) = 1 = p0
A′(1)−B(1)−B′(1)

A′(1)− 1
. (6)

From the results of the M/G/1 queue, we know that B′(1) = λ+x (e.g., see [16], page 185). Moreover, by

definition, B(1) = 1. From [16] page 184, we know that B(z) = G∗(λ+ − λ+z).

There remains to compute A(z) and A′(1). For this purpose, let us introduce

N(z, t) =
∞∑

n=0

P (Nt = n) · zn,

for t > 0 and |z| < 1. We have

A(z) =

∫ ∞

0

N(z, t) · g(t) dt.

From Equation (2), we get the differential equation followed by N(z, t);

dN(z, t)

dt
= (1− z)

(
−λ+N(z, t) + P (Nt = 0) · (λ+ − λ−)

)
.

Using P (Nt = 0) = e−λ−t and N(z, 0) = 1, we can solve this differential equation using the method of

variation of constants. After some algebra, we obtain

N(z, t) =
(1− z)(λ+ − λ−)

λ+(1− z)− λ−
e−λ−t − λ−z

λ+(1− z)− λ−
e−λ+(1−z)t.

This leads to

A(z) =
(1− z)(λ+ − λ−)

λ+(1− z)− λ−
G∗(λ−)− λ−z

λ+(1− z)− λ−
G∗(λ+(1− z)),

where G∗(.) is the Laplace-Stieltjes Transform (LST) of the service time; G∗(s) =
∫∞
t=0

g(t)e−st dt. Moreover,

A′(z) =
λ−(λ+ − λ−)

(λ+(1− z)− λ−)2
(G∗(λ−)−G∗(λ+(1− z))) +

λ+λ−z

λ+(1− z)− λ−
G′∗(λ+(1− z)).

Using G∗(0) = 1 and G′∗(0) = −x, leads to

A′(1) =
λ+ − λ−

λ−
(
G∗(λ−)− 1

)
+ λ+x.

Replacing this expression in Equation (6) gives the expression of p0 and the stability condition. Finally,

replacing the expression of A(z) in Equation (5) allows us to obtain P (z) as in the theorem. 2

In Corollary 1, we deduce the expected number of customers in the system at departure instants, E(Qd).

In the case λ+ = λ−, we obtain the Pollaczeck-Kinchin formulas for the M/G/1 queue. When λ+ ≠ λ−, the

performance measures presented here not only depend on the first two moment of the service time but also

on the LST of the service time at λ−.
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Corollary 1 We have

E(Qd) =

λ+x(G∗(λ−)((λ−)2 − (λ+)2) + (λ+)2(1− λ−x))

(λ+ + (λ− − λ+)G∗(λ−))((λ− − λ+)G∗(λ−) + λ+(1− λ−x))
+

(λ+)2λ−(x)2(1 + cv2)

2((λ− − λ+)G∗(λ−) + λ+(1− λ−x))
.

Proof. The expected number of customers in the system is equal to P ′(1). The expression of P (z) allows

us to write P (z) = N(z) 1−z
D(z) . Therefore, P

′(z) = N ′(z) 1−z
D(z) −N(z)D(z)+(1−z)D′(z)

D2(z) . Using L’Hôpital’s rule,

one can derive the limit of 1−z
D(z) as z tends to 1. For D(z)+(1−z)D′(z)

D2(z) , L’Hôpital’s rule should be used twice

to obtain the limit of this expression as z tends to 1. This explains why the second moment of the service

time is in the expression of E(Qd). The details of the computation are omitted. 2

2.2 Performance analysis at arbitrary instants

We now relate the stationary probabilities at arbitrary instants with those at departure instants in order to

use the results of Section 2.1 to obtain the performance of the system. We denote by π0 the probability of

an empty system at arbitrary instants and by πn,+ and πn,− the probability of having n customers in the

system after an arrival and after a service respectively (n ≥ 1) at arbitrary instants.

The queue length distribution is identical at departure instants and arrival instants. The reason is that

only one event (an arrival or a service departure) occurs at a time. We therefore have

p0 =
λ−π0

λ−
∞∑
k=0

πk,− + λ+
∞∑
k=1

πk,+

, (7)

pn =
λ−πn,− + λ+πn,+

λ−
∞∑
k=0

πk,− + λ+
∞∑
k=1

πk,+

, for n ≥ 1. (8)

Due to flow conservation, one may write λ−
∞∑
k=0

πk,− +λ+
∞∑
k=1

πk,+ = 1
x (1− π0). So, we deduce from Equation

(7) that π0 = p0

p0+λ−x . Using now the result of Theorem 1, we deduce that

π0 =
λ+(1− xλ−) + (λ− − λ+)G∗(λ−)

λ+ + (λ− − λ+)(1 + xλ−)G∗(λ−)
. (9)

Let us denote by pt(n, r,+) and pt(n, r,−) the probability-densities of having n customers in the system

after an arrival and after a service respectively, n ≥ 1 and a remaining service time of r, r ≥ 0, at time t

(given some arbitrary initial distribution). We also define the limit values of these probabilities; p(n, r,+) =

lim
t→∞

pt(n, r,+) and p(n, r,−) = lim
t→∞

pt(n, r,−), for n ≥ 1. In Lemma 1, we provide the differential equations

for p(n, r,+) and p(n, r,−), r ≥ 0 and n ≥ 1.
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Lemma 1 For all r ≥ 0, p(n, r,+) and p(n, r,−) obey the following differential equations

p′(1, r,+) = λ+p(1, r,+)− λ−π0g(r), (10)

p′(n, r,+) = λ+p(n, r,+)− λ−p(n− 1, r,−)− λ+p(n− 1, r,+), for n ≥ 2, (11)

p′(n, r,−) = λ−p(n, r,−)− g(r)(p(n+ 1, 0,+) + p(n+ 1, 0,−)), for n ≥ 1, (12)

where p′(n, r, .) = dp(n,r,.)
dr .

Proof. We will start with the case where n = 1 (equation (10)). First, observe that

pt+dt(1, r,+) = (1− λ+dt)pt(1, r + dt,+) + λ−π0g(r)dt.

Taking t→ ∞ and dividing by dt leads to

p(1, r + dt,+)− p(1, r,+)

dt
= λ+p(1, r + dt,+)− λ−π0g(r).

Next, taking dt→ 0, we obtain Equation (10). Equation (11) is derived from

pt+dt(n, r,+) = (1− λ+dt) · pt(n, r + dt,+) + λ−dt · pt(n− 1, r + dt,−) + λ+dt · pt(n− 1, r + dt,+),

and Equation (12) from

pt+dt(n, r,−) = (1− λ−dt) · pt(n, r + dt,−) + g(r)dt(p(n+ 1, 0,+) + p(n+ 1, 0,−)),

with the same approach. 2

In Proposition 1, using Lemma 1 we relate πn,+ and πn,− for n ≥ 1. This proposition proves that the

ratio πn,+/πn,− is constant for n ≥ 1. This translates that given a non-empty system, the queue length and

the last event are independent. This result also holds for the M/G/1 queue.

Proposition 1 We have πn,− = λ+

λ−
1−G∗(λ−)
G∗(λ−) πn,+, for n ≥ 1.

Proof. Integrating both sides of Equations (10), (11) and (12) for r from 0 to ∞, we get

p(1, 0,+) = λ−π0 − λ+π1,+, (13)

p(n, 0,+) = λ−πn−1,− + λ+πn−1,+ − λ+πn,+, for n ≥ 2, (14)

p(n, 0,−) = p(n+ 1, 0,+) + p(n+ 1, 0,−)− λ−πn,−, for n ≥ 1. (15)

Summing up Equations (14) and (15) yields

p(n, 0,+) + p(n, 0,−) = λ−πn−1,− + λ+πn−1,+ − λ+πn,+ + p(n+ 1, 0,+) + p(n+ 1, 0,−)− λ−πn,−,

9



for n ≥ 2. This equation is equivalent to

p(n, 0,+) + p(n, 0,−)− λ−πn−1,− − λ+πn−1,+ = p(n+ 1, 0,+) + p(n+ 1, 0,−)− λ−πn,− − λ+πn,+,

for n ≥ 2. Since the difference p(n, 0,+)+p(n, 0,−)−λ−πn−1,−−λ+πn−1,+ is not a function of n and tends

to zero when n tends to ∞, we get the identity

p(n+ 1, 0,+) + p(n+ 1, 0,−) = λ−πn,− + λ+πn,+, (16)

for n ≥ 1. Combining Equation (16) with Equation (15) leads to

λ+πn,+ = p(n, 0,−), (17)

for n ≥ 1.

Equation (12) can be written as

e−λ−u(p′(n, u,−)− λ−p(n, u,−)) = −g(u)(p(n+ 1, 0,+) + p(n+ 1, 0,−))e−λ−u.

Since the left hand side here is (e−λ−up(n, u,−))′, integrating both sides for u from 0 to ∞ yields

p(n, 0,−) = G∗(λ−)(p(n+ 1, 0,+) + p(n+ 1, 0,−)), for n ≥ 1, (18)

Combining Equations (16) and (18) leads to

p(n+ 1, 0,+) + p(n+ 1, 0,−) =
p(n, 0,−)

G∗(λ−)
= λ−πn,− + λ+πn,+. (19)

Since λ+πn,+ = p(n, 0,−), we obtain πn,− = λ+

λ−
1−G∗(λ−)
G∗(λ−) πn,+, for n ≥ 1. 2

Using the result of Proposition 1 in Equation (8), we obtain

πn,+ = (1− π0)
G∗(λ−)

λ+x
pn, and πn,− = (1− π0)

1−G∗(λ−)

λ−x
pn, (20)

for n ≥ 1. This allows us to derive the generating functions

P+(z) =
∞∑

n=1

πn,+ · zn and, P−(z) =
∞∑

n=0

πn,− · zn.

10



After some algebra, we get

P+(z) =
λ−G∗(λ−)((λ− − λ+)G∗(λ−) + λ+(1− λ−x))

λ+(λ+ +G∗(λ−)(λ− − λ+)(1 + λ−x))

× z(G∗(λ+ − λ+z)− 1)(λ+(1− z) + λ−)

(1− z) ((λ+ − λ−)G∗(λ−)− λ+z) + λ−z(1−G∗(λ+ − λ+z))
,

P−(z) =
(1−G∗(λ−))((λ− − λ+)G∗(λ−) + λ+(1− λ−x))

λ+ +G∗(λ−)(λ− − λ+)(1 + λ−x)

× (1− z) ((λ+ − λ−)G∗(λ−)− λ+zG∗(λ+ − λ+z))

(1− z) ((λ+ − λ−)G∗(λ−)− λ+z) + λ−z(1−G∗(λ+ − λ+z))
.

In Corollary 2, we deduce the expected number of customers in the system, E(Q), and the expected

waiting time, E(W ), at arbitrary instants. We also derive the expected remaining service time seen by an

arriving customer at a non-empty system, E(R).

Corollary 2 We have

E(Q)

x(λ+ +G∗(λ−)(λ− − λ+))
(21)

=
xλ+λ−

[
(1 + cv2)(λ+ +G∗(λ−)(λ− − λ+))− 2λ+

]
+ 2

[
(λ−)2G∗(λ−) + (λ+)2(1−G∗(λ−))

]
2 [λ+ + (λ− − λ+)(1 + xλ−)G∗(λ−)] [−xλ+λ− + λ+ +G∗(λ−)(λ− − λ+)]

,

E(W ) =
xλ+λ−

[
(1 + cv2)(λ+ +G∗(λ−)(λ− − λ+)) + 2(λ− − λ+)

]
− 2λ+(λ− − λ+)(1−G∗(λ−))

2λ− [−xλ+λ− + λ+ +G∗(λ−)(λ− − λ+)]
x, and,

(22)

E(R) =
(1 + cv2)x(λ+ +G∗(λ−)(λ− − λ+))

2λ−
− (λ− − λ+)(1−G∗(λ−)− λ−x)

(λ−)2
. (23)

Proof. The expected number of customers in the system is E(Q) =
∞∑

n=1
n(πn,++πn,−). Using Equation (20),

we deduce that

E(Q) =
1− π0
x

(
G∗(λ−)

λ+
+

1−G∗(λ−)

λ−

) ∞∑
n=1

npn =
1− π0
x

(
G∗(λ−)

λ+
+

1−G∗(λ−)

λ−

)
E(Qd).

This leads to the expression of E(Q). The throughput of served customers is 1
x (1−π0). Applying Little’s law,

we get the expected time spent in the system for a given customer by dividing the expected number in the

system by 1
x (1−π0). Finally, subtracting x to this expression leads to the expected waiting time in the queue.

As mentioned above, the queue length distribution is identical at departure instants and arrival instants.

Hence, the expected waiting time can be written as a function of E(R) using the stationary probabilities at

arrival instants, pn, for n ≥ 1;

E(W ) =
∞∑

n=1

pn ((n− 1)x+ E(R)) . (24)

11



This leads to E(R) = x+ E(W )−xE(Qd)
1−p0

. Using the explicit expressions of E(W ), E(Qd) and p0, the expression

of E(R) can be derived. 2

2.3 Special cases

2.3.1 Exponential case

In Proposition 2, we give the performance measures associated to an exponential service time distribution.1

We denote by a+ and a− the products a+ = x · λ+ and a− = x · λ−.

Proposition 2 Under the stability condition a−a+ < 1, we have

π0 =
1− a−a+

1 + a−
, (25)

E(W ) = x
a+(1 + a−)

1− a−a+
, and (26)

P (W > t) = a+
1 + a−

1 + a+
e
− t

x
1−a−a+

1+a+ , (27)

for t > 0.

In Figure 1, we illustrate the impact of λ− and λ+ on the waiting time distribution. We observe that when the

arrival rate after an arrival is higher than the arrival rate after a service then the system performance deterio-

rates in comparison with an M/M/1 queue. Most of the observed monotonicity results are intuitive since they
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(b) Impact of λ+ (λ− = 0.1)

Fig. 1 Impact of λ+ and λ− on P (W > t) (x = 1)

correspond to the impact of the arrival parameter for an M/M/1 queue. The impact of a+ is more surprising.

The probability P (W > t) can be concave in a+ for t > 0. Note that we have lim
t→0

P (W > t) = a+
1 + a−

1 + a+
.

The variable a− is only in the numerator of this expression. This explains the almost linear form of the

curves of P (W > t) as functions of a− when t is small (Figure 1(a)).

1 The performance measures in the exponential case could also be obtained using a Markov chain analysis.
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2.3.2 Erlang case

In Proposition 3, we give the performance measures associated to an Erlang service time distribution with

N exponential phases where each phase has an expected duration of x
N .2

Proposition 3 Under the stability condition a−a+ < a−
(

N
a−+N

)N
+ a+

(
1−

(
N

a−+N

)N)
, we have

π0 =
a+(1− a−) + (a− − a+)

(
N

N+a−

)N
a+ + (a− − a+)(1 + a−)

(
N

N+a−

)N , and

E(W ) = x

a+a−
((

1
N + 1

)(
(a− − a+)

(
N

N+a−

)N
+ a+

)
+ 2 (a− − a+)

)
− 2a+ (a− − a+)

(
1−

(
N

N+a−

)N)
2a−

(
(a− − a+)

(
N

N+a−

)N
− a+a− + a+

) .

The impact of N on the stability of the system depends on the difference λ+ − λ−. Consider the function

F (N) =
(

N
a−+N

)N
(a− − a+) + a+(1 − a−). We have F (N) > 0 if and only if a−a+ < a−

(
N

a−+N

)N
+

a+
(
1−

(
N

a−+N

)N)
. So, the system is stable if and only if F (N) > 0. Since the function

(
N

a−+N

)N
is

decreasing in N , F is decreasing in N if and only if λ+ < λ−. In other words, increasing N stabilizes the

system if and only if λ+ > λ−.

Finally, we can conclude that the system is stable for all Erlang service time distributions with expected

duration x if and only if {
a−a+ < 1

a+ ≥ a−
or

{
e−a−

> (a−−1)a+

a−−a+

a+ < a−
.

These relations are obtained either by choosing N = 1 (exponential distribution) or by letting N → ∞

(deterministic distribution).

We now evaluate the impact of the number of phases on E(W ) for different values of λ+ and λ− (Figure

2). We observe that the number of phases can deteriorate the expected waiting time when λ− > λ+ (Figure

2(a)). This result is surprising since it is in contradiction with the improvement which should result from

the reduction of the variability in the service process when the number of phases increases. The reason

is related to the presence of the term G∗(λ−) in the expression of E(W ) which involves the service time

distribution. The improvement related to the decreasing of the coefficient of variability when N increases

can be compensated by an increasing number of arrivals during service.

The expected number of customers arriving during a service has already been computed in Section 2.1.

It is either equal to A′(1) or to B′(1). The expression of A′(1) explains the position of the curves in Figure

2. Since G∗(λ−) decreases as N increases, the expected number of arrivals during service increases as N

increases in the case λ− > λ+. This is consistent with the conclusion derived above for the stability region;

if λ− > λ+, increasing N reduces the stability region.

2 Another way to compute the performance measures in the Erlang case is to use a Matrix geometric approach.
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(b) Impact of λ+ (λ− = 0.5)

Fig. 2 Impact of λ+ and λ− on E(W ) (x = 1)

2.3.3 Deterministic case

By letting r → ∞ in Proposition 3 we obtain the performance measures in the case of a deterministic service

with duration x.

Proposition 4 Under the stability condition a−a+ < a+ + e−a−
(a− − a+), we have

π0 =
a+(1− a−) + (a− − a+)e−a−

a+ + (a− − a+)(1 + a−)e−a− , and

E(W ) = xa+
(a−)2 + (a− − a+)(a− − 2 + (a− + 2)e−a−

)

2a−
(
(a− − a+) e−a− − a+a− + a+

) .

3 Equilibrium Strategy

An interesting question is to determine if the event-dependency of the arrival process can be the result of an

individual rational strategy.3 For this purpose, we are interested in the service level differentiation after an

arrival or after a service. The idea is to determine how does the nature of the last event give an indication

on the expected waiting time encountered by an arriving customer. If the last event is a service, an arriving

customer may arrive in an empty system. This cannot be the case if the last event is an arrival. This gives

an advantage to the customers who arrive after a service. However, given a non-empty system, if the last

event is a service, an arriving customer is the first to arrive during a service time. Customers who arrive

after an arrival arrive later during the service time. The order of arrival during a service may also influence

the expected remaining service time seen by an arriving customer. For instance, with a deterministic service

time, the first customer who arrives during a service has a longer expected remaining service time than the

next customers. In order to compare the expected waiting time after an arrival or a service, we first evaluate

in Section 3.1 the expected remaining service times after an arrival or a after service seen by an arriving

customer. In Section 3.2, we derive the expected waiting time of a customer who arrives after an arrival, and

the one of a customer who arrives after a service, and compare between them.

3 We refer the reader to the book of [12] for an overview on equilibrium behavior in queueing systems.
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3.1 Expected remaining service time

We are interested in the expected remaining service of an arriving customer. This metric is function of

the last realized event and of the number of customers present in the system. We denote by rn,+ and

rn,− the expected remaining service time seen by a customer who arrives after an arrival or a service

respectively when n customers are present in the system, for n ≥ 1. We denote by P ∗(n, s,+) and P ∗(n, s,−)

the Laplace-Stieltjes Transform (LST) of p(n, r,+) and p(n, r,−); P ∗(n, s,+) =
∫∞
0
p(n, r,+)e−sr dr, and

P ∗(n, s,+) =
∫∞
0
p(n, r,+)e−sr dr. We have

rn,+ =
1

πn,+

∫ ∞

0

rp(n, r,+)dr = − lim
s→0

P ′∗(n, s,+)

πn,+
,

and,

rn,− =
1

πn,−

∫ ∞

0

rp(n, r,−) dr = − lim
s→0

P ′∗(n, s,−)

πn,−
,

for n ≥ 1. In Proposition 5, we provide a recursive formula for the conditional distributions of the residual

service times. These relations allows us to compute rn,+ and rn,− for n ≥ 1. In addition, we show in Section 1

of the online supplement how these relations can be used to obtain the performance measures already found

in Section 2.

Proposition 5 Under the stability condition x < 1
λ− (1−G∗(λ−))+ 1

λ+G
∗(λ−), we have the following initial

relations:

π1,+ =
λ−

λ+
(1−G∗(λ+))π0, (28)

P ∗(1, s,+) =
λ+

1−G∗(λ+)

G∗(λ+)−G∗(s)

s− λ+
π1,+. (29)

Next, for n ≥ 1,

P ∗(n, s,−) =
λ−

1−G∗(λ−)

G∗(λ−)−G∗(s)

s− λ−
πn,−, (30)

πn+1,+ =
πn,+

G∗(λ−)
− λ−

λ+
P ∗(n, λ+,−)− P ∗(n, λ+,+), (31)

P ∗(n+ 1, s,+) = λ−
P ∗(n, λ+,−)− P ∗(n, s,−)

s− λ+
+ λ+

P ∗(n, λ+,+)− P ∗(n, s,+)

s− λ+
. (32)

Proof. First, Equation (10) can be written as

e−λ+u(p′(1, u,+)− λ+p(1, u,+)) = −λ−e−λ+uπ0g(u).
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Since the left hand side here is (e−λ+up(1, u,+))′, integrating both sides for u from r to ∞ leads to

p(1, r,+) = λ−π0e
λ+r

∫ ∞

u=r

e−λ+ug(u) du. (33)

Inserting r = 0 in (33) leads to

p(1, 0,+) = λ−π0G
∗(λ+). (34)

Combining now Equation (13) of Section 2 and Equation (34), leads to π1,+ = λ−

λ+ (1−G∗(λ+))π0 (Equation

(28)).

From Equation (10), one may write

∫ ∞

r=0

e−srp′(1, r,+)dr = λ+
∫ ∞

r=0

e−srp(1, r,+)dr − λ−π0

∫ ∞

r=0

e−srg(r) dr.

This equation leads to

sP ∗(1, s,+)− p(1, 0,+) = λ+P ∗(1, s,+)− λ−π0G
∗(s).

Since p(1, 0,+) = λ−π0G
∗(λ+) (Equation (34)), we obtain P ∗(1, s,+) = λ−G∗(λ+)−G∗(s)

s−λ+ π0. Finally, Equa-

tion (28) leads to Equation (29).

From Equation (12), we deduce that

∫ ∞

r=0

e−srp′(n, r,−) dr =λ−
∫ ∞

r=0

e−srp(n, r,−) dr − (p(n+ 1, 0,+) + p(n+ 1, 0,−))

∫ ∞

r=0

e−srg(r) dr,

for n ≥ 1. Thus,

sP ∗(n, s,−)− p(n, 0,−) = λ−P ∗(n, s,−)− (p(n+ 1, 0,+) + p(n+ 1, 0,−))G∗(s). (35)

Combining Equation (19) and Proposition 1 leads to p(n + 1, 0,+) + p(n + 1, 0,−) =
λ+πn,+

G∗(λ−) . Using now

Equation (17) with Proposition 1 in Equation (35), we obtain Equation (30).

With the same approach as for Equations (33) and (34), we obtain

p(n, r,+) = eλ
+r

∫ ∞

u=r

e−λ+u(λ−p(n− 1, u,−) + λ+p(n− 1, u,+)) du, for n ≥ 2, (36)

p(n, 0,+) = λ−P ∗(n− 1,−, λ+) + λ+P ∗(n− 1,+, λ+), for n ≥ 2, (37)

using Equation (11). Combining Equation (37) and Equation (14) leads to

λ+πn,+ = λ−πn−1,− + λ+πn−1,+ − (λ−P ∗(n− 1,−, λ+) + λ+P ∗(n− 1,+, λ+)),
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for n ≥ 2. With Equation (19), λ−πn−1,− + λ+πn−1,+ = p(n, 0,+) + p(n, 0,−). Combining Equation (18)

with Equation (17) leads to p(n, 0,+) + p(n, 0,−) = p(n−1,0,−)
G∗(λ−) =

λ+πn−1,+

G∗(λ−) . The aforementioned relations

prove Equation (31).

From Equation (11), we have

∫ ∞

r=0

e−srp′(n, r,+)dr =λ+
∫ ∞

r=0

e−srp(n, r,+)dr − λ−
∫ ∞

r=0

e−srp(n− 1, r,−) dr

− λ+
∫ ∞

r=0

e−srp(n− 1, r,+)dr,

for n ≥ 2. The equality is equivalent to

sP ∗(n, s,+)− p(n, 0,+) = λ+P ∗(n, s,+)− λ−P ∗(n− 1, s,−)− λ+P ∗(n− 1, s,+).

Finally, Equation (37) leads to Equation (32). 2

The consequence of Equation (30) is that the expected remaining service time of a customer who arrives in

a non-empty system after a service does not depend on the system size. This property allows us to explicitly

derive in Corollary 3 the expected remaining service time seen at arrival for a customer who arrives after a

service, E(R−), and after an arrival, E(R+).

Corollary 3 We have

E(R−) =
x

1−G∗(λ−)
− 1

λ−
, and, (38)

E(R+) =
λ−x(1 + cv2)(λ+(1−G∗(λ−)) + λ−G∗(λ−))− 2λ+(λ−x+G∗(λ−)− 1)

2(λ−)2G∗(λ−)
. (39)

Proof. We have rn,− = − lim
s→0

P ′∗(n,s,−)
πn,−

, for n ≥ 1. Using Equation (30), we get rn,− = x
1−G∗(λ−) −

1
λ− , for

n ≥ 1. Therefore, the expected remaining service time seen by an arriving customer after a service does not

depend on n. Hence, E(R−) = rn,−. The same property does not hold for rn,+. However, we can compute

E(R+) using the following decomposition:

E(W ) =
∞∑

n=1

((n− 1)x+ E(R+))pn,+ +
∞∑

n=1

((n− 1)x+ E(R−))pn,−, (40)

where pn,+ and pn,− are the stationary probabilities to have n customers in the system at arrival instants

after an arrival or a service (pn = pn,+ + pn,−, for n ≥ 1). This leads to

E(R+) = x+

E(W )− xE(Qd)− (E(R−)− x)
∞∑

n=1
pn,−

∞∑
n=1

pn,+

.
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All parts of this expression are know except
∞∑

n=1
pn,− and

∞∑
n=1

pn,+. In what follows we derive these metrics.

We have pn,− =
λ−πn,−

λ−
∞∑

n=0
πn,−+λ+

∞∑
n=1

πn,+

. The denominator of this expression is 1−π0

x due to flow conservation.

Next, from Equation (20), we obtain

∞∑
n=1

πn,− = (1− π0)
1−G∗(λ−)

λ−x

∞∑
n=1

pn.

Therefore,
∞∑

n=1
pn,− =

λ−(1−π0)
1−G∗(λ−)

λ−x
(1−p0)

1−π0
x

. Using the expression of p0 in Theorem 1, we obtain

∞∑
n=1

pn,− =
λ+λ−x(1−G∗(λ−))

λ−G∗(λ−) + λ+(1−G∗(λ−))
.

With the same approach, we obtain
∞∑

n=1
pn,+ = λ+λ−xG∗(λ−)

λ−G∗(λ−)+λ+(1−G∗(λ−)) . This finishes the proof. 2

Remark. The independence between the system size and the remaining service time for a customer

who arrives after a service is not surprising. As mentioned above, a customer who arrives after a service in

a non-empty system is the first to arrive during a service irrespective of the number of customers already

present. For a customer who arrives after an arrival, the number of customers present in the system has

an impact. For instance, if a customer arrives after an arrival when one customer is already in the system,

then it means that the customer in service arrived in an empty system. So, r1,+ is the expected remaining

service time of the first customer who arrives during a service. As expected, with Equation (29), we obtain

r1,+ = x
1−G∗(λ+) −

1
λ+ . This is exactly the expression of E(R−) by replacing λ− by λ+. Consider now the

same situation when two customers are already in the system. In this case the arrived customer cannot be

the first to arrive during a service, so the expression of r2,+ may differ from the one of r1,+.

3.2 Expected waiting time

In Theorem 2, we compare between the expected waiting times after an arrival and after a service. Let us

denote by E(W+), E(W−), and E(W−|non-empty) the expected waiting times of a customer who arrives

after an arrival, after a service, and after a service given a non-empty system.

Theorem 2 The following holds.

1. E(W+) ≥ E(W−|non-empty) if and only if cv2+1
2 ≥ E(R−)

x ,

2. E(W+) ≥ E(W−).

Proof. Let us start with the first statement. Proposition 1 proves that the ratio πn,+/πn,− is constant

for n ≥ 1. Since pn,+ =
λ+πn,+

λ−
∞∑

n=0
πn,−+λ+

∞∑
n=1

πn,+

and pn,− =
λ−πn,−

λ−
∞∑

n=0
πn,−+λ+

∞∑
n=1

πn,+

, the ratio pn,+/pn,− is also

constant for n ≥ 1. This translates that given a non-empty system, the queue length at customers’ arrival

18



and the last event are independent. This result is important for the comparison between the expected waiting

times after an arrival or after a service given a non-empty system. It means that they only differ in their

remaining service times. This can also be shown via the following decomposition:

E(W+) =

∞∑
n=1

pn,+((n− 1)x+ E(R+))

∞∑
n=1

pn,+

= E(R+)− x+ E(Qd)
λ+(1−G∗(λ−)) + λ−G∗(λ−)

λ+λ−
, and,

E(W−|non-empty) =

∞∑
n=1

pn,−((n− 1)x+ E(R−))

∞∑
n=1

pn,−

= E(R−)− x+ E(Qd)
λ+(1−G∗(λ−)) + λ−G∗(λ−)

λ+λ−
.

Therefore, by comparing E(R+) and E(R−) using their expressions in Corollary 3, we get the condition of

the first statement.

Let us now consider the second statement. The order of arrival during a service determines the comparison

between E(W+) and E(W−|non-empty) (first statement). The comparison between E(W+) and E(W−) also

involves the probability to arrive in an empty system. This makes the comparison more complex since two

phenomena are involved. In this case, the explicit expressions of the expected waiting times are required for

the comparison. These expressions are computed in a similar way as E(R+) and E(R−) in Corollary 3. We

have

E(W+)

=

[
λ+(1−G∗(λ−)) + λ−G∗(λ−)

] [
λ−x(1 + cv2)(λ+(1− λ−x) +G∗(λ−)(λ− − λ+ + λ+λ−x))− 2λ+(1− λ−x)(λ−x+G∗(λ−)− 1)

]
2(λ−)2G∗(λ−)(λ+(1− λ−x) + (λ− − λ+)G∗(λ−))

,

E(W−|non-empty)

=

[
λ+(1−G∗(λ−)) + λ−G∗(λ−)

] [
λ−λ+x2(1−G∗(λ−))(1 + cv2) + 2(1− λ+x)(λ−x+G∗(λ−)− 1)

]
2λ−(1−G∗(λ−))(λ+(1− λ−x) + (λ− − λ+)G∗(λ−))

, and,

E(W−)

=
λ+x

[
λ+(1−G∗(λ−)) + λ−G∗(λ−)

] [
λ−λ+x2(1−G∗(λ−))(1 + cv2) + 2(1− λ+x)(λ−x+G∗(λ−)− 1)

]
2(λ+(1− λ−xG∗(λ−)) + (λ− − λ+)G∗(λ−))(λ+(1− λ−x) + (λ− − λ+)G∗(λ−))

.

One then may write

E(W+)− E(W−)

=
(λ+(1−G∗(λ−)) + λ−G∗(λ−))(λ−x(1 + cv2)(λ+(1−G∗(λ−)) + λ−G∗(λ−)) + 2λ+(1− λ−x−G∗(λ−)))

2(λ−)2G∗(λ−)(λ+(1−G∗(λ−)) + λ−G∗(λ−)(1− λ+x))

The sign of the denominator depends on the sign of λ+(1−G∗(λ−)) + λ−G∗(λ−)(1− λ+x). This expression

can be rewritten as λ+λ−x(1−G∗(λ−))+λ+(1−xλ−−G∗(λ−))+λ−G∗(λ−). Since G∗(λ−) ≤ 1, λ+λ−x(1−

G∗(λ−)) ≥ 0. Next, we have

1− xλ− −G∗(λ−) =

∫ ∞

0

g(t)(1− λ−t− e−λ−t) dt.
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Let us define ϕ1(t) = 1−λ−t−e−λ−t, for t ≥ 0. We have ϕ′1(t) = −λ−(1−e−λ−t) ≤ 0. So, ϕ1(t) is decreasing

in t. Moreover, ϕ1(0) = 0 then ϕ1(t) ≤ 0, for t ≥ 0. This proves that 1 − xλ− − G∗(λ−) ≤ 0. Hence,

λ+(1− xλ− −G∗(λ−)) + λ−G∗(λ−) is decreasing in λ+. The stability condition in Theorem 1 is equivalent

to

λ+ <
λ−G∗(λ−)

xλ− +G∗(λ−)− 1
. (41)

As λ+ tends to λ−G∗(λ−)
xλ−+G∗(λ−)−1 , λ

+(1 − xλ− − G∗(λ−)) + λ−G∗(λ−) tends to 0. This proves that λ+(1 −

G∗(λ−)) + λ−G∗(λ−)(1− λ+x) ≥ 0.

Consider now the numerator. Since 0 ≤ G∗(λ−) ≤ 1, λ+(1 − G∗(λ−)) + λ−G∗(λ−) ≥ 0. Next, the

inequality λ−x(1 + cv2)(λ+(1−G∗(λ−)) + λ−G∗(λ−)) + 2λ+(1− λ−x−G∗(λ−)) ≥ 0 is equivalent to

cv2 + 1

2
≥ λ+(G∗(λ−) + λ−x− 1)

λ−x(λ−G∗(λ−) + λ+(1−G∗(λ−))
. (42)

We define the function in λ+, ψ(λ+) = λ+(G∗(λ−)+λ−x−1)
λ−x(λ−G∗(λ−)+λ+(1−G∗(λ−)) .We have ψ′(λ+) = G∗(λ−)(G∗(λ−)+λ−x−1)

x(λ−G∗(λ−)+λ+(1−G∗(λ−))2 ≥

0, since we have G∗(λ−) + λ−x − 1 ≥ 0. So ψ is increasing in λ+. As λ+ tends to λ−G∗(λ−)
xλ−+G∗(λ−)−1 (upper

bound for λ+, see Equation (41)), ψ(λ+) tends to G∗(λ−)+λ−x−1
(λ−x)2 . Therefore, ψ(λ+) ≤ G∗(λ−)+λ−x−1

(λ−x)2 .

Consider now cv2+1
2 − G∗(λ−)+λ−x−1

(λ−x)2 =
1−λ−x+

(λ−)2

2 E(S2)−G∗(λ−)

(λ−x)2 , where E(S2) =
∫∞
0
t2g(t) dt. We have

1− λ−x+
(λ−)2

2
E(S2)−G∗(λ−) =

∫ ∞

0

(
1− λ−t+

(λ−)2

2
t2 − e−λ−t

)
g(t) dt.

We define ϕ2(t) = 1−λ−t+ (λ−)2

2 t2−e−λ−t, for t ≥ 0. We have ϕ′2(t) = −λ−ϕ1(t) ≥ 0. So ϕ2(t) is increasing

in t. Moreover, ϕ2(0) = 0. So, ϕ2(t) ≥ 0, for t ≥ 0 and 1 − λ−x + (λ−)2

2 E(S2) − G∗(λ−) ≥ 0. This proves

that 0 ≤ cv2+1
2 − G∗(λ−)+λ−x−1

(λ−x)2 ≤ cv2+1
2 −ψ(λ+). Hence, Inequality (42) holds in all cases. This finishes the

proof of the second statement. 2

For the first statement, the condition cv2+1
2 ≥ E(R−)

x reveals the importance of the service variability

in the performance comparison. With high variability, the indication that the last event was an arrival is a

signal that the expected waiting time may be longer than if the last event was a service.

Examples.

1. The service time follows an exponential distribution. Then, E(R−) = x and cv = 1. So E(W+) =

E(W−|non-empty).

2. The service time follows a deterministic distribution. Then E(R−)
x = 1

1−e−λ−x
− 1

λ−x and cv = 0. We can

show that 1

1−e−λ−x
− 1

λ−x ≥ 1/2. This proves that E(W+) ≤ E(W−|non-empty).

3. The service time follows a particular hyperexponential distribution for which a customer is either served

with an exponential duration with rate µ0 with probability q or is instantaneously served with probability
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1− q. We have G∗(λ−) = qµ0

µ0+λ− , x = q
µ0

and cv2 = 2
q − 1. Then, cv2+1

2 − E(R−)
x =

(1−q)( µ0
λ− +1)

2

q(1+ µ0
λ− (1−q))

≥ 0. So,

E(W+) ≥ E(W−|non-empty).

The second statement indicates that in all cases, the expected waiting time of an arriving customer

after an arrival is longer than the expected time after a service. This might be surprising. Given the first

statement, one could imagine that some counterexamples could be found for instance in cases with a low

service variability and a high workload situation.

We now explain how the model studied in the article can be the result of a strategic behavior. Consider

an initial unobservable system with a potential arrival rate λ. At arrival, a customer can decide to join the

queue or not to join. Although the system is unobservable, an arriving customer is informed about the last

realized event; an arrival or a service completion. We define the net benefit for a customer who joins by the

value of service, B, minus the cost of waiting proportional to a waiting cost per time unit, C. Given that the

expected waiting time of an arriving customer is different whether the last event was an arrival or a service,

a strategy after an arrival or after a service can be described by two different probabilities of joining p̃+ and

p̃−, such that λ+ = p̃+ · λ and λ− = p̃− · λ. The possible values for p̃+ and p̃− are such that the stability

condition in Theorem 1 is satisfied. The net benefit for a customer who arrives after and arrival is therefore

B−C ·E(W+) and it is B−C ·E(W−) for a customer who arrives after a service completion. We have the

following cases:

– Case 1: E(W+) ≤ B
C for p̃+ = p̃− = 1. In this case, since E(W−) ≤ E(W+), we also have E(W−) ≤ B

C

for p̃+ = p̃− = 1. In this case, even if all potential customers join after an arrival or a service, they

all enjoy a non-negative benefit. Therefore, the strategy of joining with probability p̃+ = p̃− = 1 is an

equilibrium strategy. 4

– Case 2: E(W+) ≥ B
C as p̃+ tends to 0. As p̃+ tends to 0, E(W+) tends to x 1+cv2

2 and E(W−) tends

to 0.5 Even if no other customer joins after an arrival, the net benefit of a customer who joins after an

arrival is non-positive. Therefore, the strategy of joining after an arrival with probability p̃+ = 0 is an

equilibrium strategy and no other equilibrium is possible after an arrival. If all customers join after a

service completion, they all enjoy a non-negative benefit since E(W−) = 0. Therefore the strategy of

joining with p̃+ = 0 and p̃− = 1 is an equilibrium strategy.

– Case 3: E(W+) > B
C for p̃+ = p̃− = 1 and E(W+) < B

C as p̃+ tends to 0. In this case if p̃+ = 1 then a

customer who joins after an arrival suffers a negative benefit. This cannot be an equilibrium strategy. If

p̃+ = 0, then all customers balk after an arrival. Yet, a customer who joins after an arrival would get a

positive benefit. This contradiction shows that p̃+ = 0 cannot be an equilibrium strategy. There exists

a unique equilibrium where λ+ solves E(W+) = B
C for p̃− = 1. In this case E(W−) ≤ B

C , therefore if

4 In this case E(W+) = x 1+cv2

2

(
1

G∗(λ) + λx
1−λx

)
+ 1−λx

λG∗(λ) −
1
λ
, and E(W−) = x

(
1+cv2

2
(λx)2(1−G∗(λ))

(1−λx)(1−λxG∗(λ)) +
G∗(λ)+λx−1
1−λxG∗(λ)

)
.

5 The limit of E(W+) corresponds to the expected remaining service time in an M/G/1 queue.
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all customers join after a service, they all enjoy a non-negative benefit. Therefore the strategy of joining

with 0 < p̃+ < 1 and p̃− = 1 is also an equilibrium strategy.

As a conclusion, the case λ− ≥ λ+ can be seen as the result of a strategic behavior.

4 The Admission Control Problem

We question here the possibility to take different decisions after a service or after an arrival to answer a

classical routing problem in the queueing theory. This problem is referred in the literature as the admission

control problem (Section 1 in [18]).

4.1 The optimisation problem

We propose to solve this problem under event-dependency. As mentioned in the previous section, the event-

dependency may be the result of a customer strategic behavior when only the information of the last event

is given. This leads to λ− ≥ λ+. However, it might be interesting for the system to better control the arrival

process by accepting or rejecting customers based on the system size. Let us specify that the arrival of a

customer who was rejected is not seen as an arrival for the purpose of the rate changing.

A controller has to determine at arrival of a new customer whether we allow this new customer to enter

the system or whether we reject this customer from the system. The optimization problem may be written

as {
Maximize TS ,

subject to E(Q) ≤ E(Q),
(43)

where TS is the throughput of served customers, E(Q) is the expected number of customers in the queue

and, E(Q) is the service level constraint on E(Q). We are restricting the class of admissible policies to

the class of deterministic policies. In real system, for instance in a shop, deterministic policies are easier to

implement than non deterministic ones which may require randomization. Yet, deterministic policies are not

necessarily optimal. In order to saturate the constraint, it may be useful to randomize between two or more

deterministic policies. This however may only improve the class of deterministic policies. It does not lead to

the optimal policy.6 In Section 4.2, we give conditions under which deterministic policies (or randomization

between a number of them) are optimal.

Let us now specify the nature of a deterministic policy. Any policy within the class of deterministic

stationary policies is equivalent to a two-thresholds policy for a given remaining service time. More precisely,

for a given remaining service time r and k customers in the system, a two-thresholds policy is defined by two

thresholds k+r and k−r (k+r , k
−
r ≥ −1) such that,

6 [3] shows an example where deterministic policies are not optimal for the admission control in an M/G/1 queue.
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– if an arrival occurs after an arrival, then this customer is rejected if k > k+r , otherwise this customer is

accepted,

– if an arrival occurs after a service, then this customer is rejected if k > k−r , otherwise this customer is

accepted.

The two-thresholds policy can be used to improve the classical one-threshold policy where the same decision

is taken after an arrival or a service. By allowing different decisions after an arrival or after a service, a larger

range of values may be reachable for E(Q). This may lead to a better solution for the optimization problem.

4.2 Optimal policy

We propose to formulate the routing problem as a Markov decision process (MDP) and next use the value

iteration technique to prove the threshold structure of the optimal policy. We choose to approximate the

service time duration by a Coxian distribution. Since Coxian distributions are dense in the field of all non-

negative distributions [27], the obtained results apply for a general distribution. Consider a Coxian random

variable which represents the service duration. It is defined by the parameters µj (µj > 0, 1 ≤ j ≤ N), and

rj (rj ∈ [0, 1], 0 ≤ j ≤ N) with r1 = 0. The quantity rj is the probability to enter the remaining phase j − 1

after leaving remaining phase j and the parameter µj is the rate of the exponential distribution describing

the random duration spent at remaining phase j.

However, our system is not a standard Markov decision process (MDP). The form of the problem makes it

a constrained MDP; maximize the throughput of served customers with a constraint on the expected number

of customers in the system. Constrained MDP’s can be solved using various techniques. Here we use one that

introduces the constraint in the objective using a Lagrange multiplier. Under weak conditions it can be seen

that the optimal policy for a certain Lagrange multiplier is optimal for the constrained problem if the value

of the constraint under this policy attains exactly E(Q). From the theory on constrained MDP’s it follows

that this policy is stationary and randomizes in at most 1 state. For this and other results on constrained

MDP’s, see the book of [2]. The optimization problem may then be rewritten as min(E(Q)− c · TS), where

the coefficient c (c ≥ 0) is the Lagrange multiplier which translates the relative importance given, by the

system manager, to the throughput of served customers (TS) compared to expected number of customers in

the system (E(Q)).

Let us denote by (x, y) a state of the system where x is the number of potential remaining phases of work

for the server, x ≥ 0 and y is the nature of the last event; an arrival (y = +) or a service (y = −). We denote

the transition rate from state (x, y) to state (x′, y′) by q(x,y),(x′,y′). Hence for x, x′ ≥ 0 and y, y′ ∈ {+,−},
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we have

q(x,y),(x′,y′) =



λ+, if x′ = x+N, y = y′ = + for x ≥ 0,

λ−, if x′ = x+N, y = −, y′ = + for x ≥ 0,

rjµj , if x = kN + j, x′ = x− 1, y′ = y for k ≥ 0, 1 ≤ j ≤ N, and y ∈ {+,−},

(1− rj)µj , if x = kN + j, x′ = kN, y′ = − for k ≥ 0, 1 ≤ j ≤ N, and y ∈ {+,−},

0, otherwise,

which corresponds to arrivals and service departures.

We choose to discretize our continuous-time model. This is possible because it is uniformizable (Section

11.5.2. in [25]). We formulate a 2-step value function, in order to separate transitions and actions. We define

the dynamic programming value functions W−
n (x), W+

n (x), V −
n (x), and V +

n (x) over n ≥ 0 steps, depending

on the state of the system. We choose W−,+
0 (x) = 0 and V −,+

0 (x) = 0 for x ≥ 0. We assume without loss

of generality that λ+ + λ− +
∑N

j=1 µj = 1, such that the rate out of each state is equal to 1; thus we can

consider the rates to be transition probabilities. We then may write for 1 ≤ x ≤ N , and k ≥ 0,

V +
n+1(kN + x) = k + 1 + λ+W+

n (kN + x) + rxµxV
+
n (kN + x− 1) + (1− rx)µxV

−
n (kN) (44)

+ (1− λ+ − µx)V
+
n (kN + x),

V −
n+1(kN + x) = k + 1 + λ−W−

n (kN + x) + rxµxV
−
n (kN + x− 1) + (1− rx)µxV

−
n (kN)

+ (1− λ+ − µx)V
−
n (kN + x),

V −
n+1(0) = λ−W−

n (0) + (1− λ−)V −
n (0).

The operator Wn represents the decision to accept or to reject a new customer from the system. After an

arrival we have W+
n (kN + x) = min(V +

n ((k + 1)N + x) − c, V +
n (kN + x)), and after a service, we have

W−
n (kN + x) = min(V +

n ((k + 1)N + x)− c, V −
n (kN + x)).

For each n > 0 and every state, there is a minimizing action at customer’s arrival: accept this customer or

reject this customer. One way of obtaining the long-run average optimal actions is to use the value iteration

technique introduced by [7] and [14], by recursively evaluating Vn using Equation (44), for n ≥ 0. To prove

the form of the optimal policy we want to establish structural properties of the value function. In particular,

it would be interesting to obtain conditions for which threshold policies based on the number of customers

in the system are optimal.

24



To prove that the optimal policy has a threshold structure, we need the conditions

λ− ≥ λ+, and, (45)

(1− rx)µx ≥ (1− rx+1)µx+1, for 1 ≤ x ≤ N. (46)

In Proposition 6, under Conditions (45) and (46), we prove by induction on the value function that the

optimal policy is of threshold type based on the number of customers in the system for a given number of

remaining phases. The proof follows a standard MDP methodology where structural properties of the value

function are proven by induction. The complete detailed proof is given in Section 2 of the online supplement.

Proposition 6 Under the condition, λ− ≥ λ+, and (1−rx)µx ≥ (1−rx+1)µx+1, for 1 ≤ x ≤ N , the optimal

admission policy has a threshold structure. More precisely, there exists two thresholds k+x and k−x such that,

for k ≥ 0 and 1 ≤ x ≤ N ,

– if an arrival occurs in state (kN + x,+), it is optimal to reject this customer if k > k+x , otherwise this

customer is accepted,

– if an arrival occurs in state (kN + x,−), it is optimal to reject this customer if k > k−x , otherwise this

customer is accepted.

Condition (45) is required to show the convexity and the supermodularity properties of the value function.

Condition (46) means that the departure rate out of a given service phase increases with the number of elapsed

phases of service. This condition allows the value function to be increasing in the number of remaining service

phases. This monotonicity property of the value function is required to prove that the optimal policy has a

threshold structure.

Without this condition, the value function can be non-increasing in the number of remaining phases of

service. Consider for instance a situation with a Coxian service time distribution with two phases. The first

phase of service has an expected duration of 1 and the second one has an expected duration of 100. The

probability to end service after the first waiting phase is 90%. So, if at a customer arrival there is 1 customer

in the system being in the second phase of service, then the expected waiting time of an arriving customer

is 100. If at a customer arrival there are 2 customers in the system and the one in service being in the first

phase of service, then the expected waiting time of an arriving customer is 2× (1 + 0.1× 100) = 22 < 100.

Therefore in this case, the congestion of the system is not positively bound to the number of remaining

phases of service and the value function may not be increasing.

Numerical illustration. We consider a particular Coxian distribution for the service time with two exponential

phases with rate µ1 and µ2 and with probabilities r1 = 0 and r2 = 1.7 From proposition 6, the optimal policy

is determined by the thresholds k+1 , k
−
1 , k

+
2 , and k−2 . The computation of the performance measures can

7 This particular Coxian distribution is an hypoexponential distribution.
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be done using a Matrix geometric approach (e.g., see [24]). In Figures (3(a)) and (3(b)), we represent the

performances measures as a function of k− = k−1 + k−2 and k+ = k+1 + k22 for three different values for

k+− k−. The parameters k− and k+ represent the thresholds on the number of remaining service phases. In

this example, the optimal thresholds to answer the optimization problem are k+ = 3 and k− = 2. This means

that an arriving customer should be rejected after an arrival if there is strictly more than 2 customers in the

system or if there is two customers in the system and the customer in service still has 2 phases of service

to achieve. A customer should be rejected after a service if there is strictly more than one customer in the

system. This illustrates a case where the two-thresholds policy achieves a better solution to the optimization

problem than the one-threshold policy.

���

����

���

����

���

����

���

����

���

� � 	 � � � �


��
��


��
�	


��
��

(a) E(Q)

���

����

���

����

���

����

���

����

���

����

���

	 � � � � � �


��
��


��
��


��
��
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Fig. 3 Performance measures (λ+ = 1, λ− = 2, µ1 = 5, µ2 = 10, r1 = 0, r2 = 1, E(Q) = 0.6)

4.3 Performance analysis under the two-thresholds policy

The result of Proposition 6 may be difficult to implement in practice. First, it might be difficult to find the

appropriate Coxian distribution which well approximates the considered service time distribution. A field

of research is dedicated to this problem (e.g., see [29], [4], [13]). Second, the optimal policy depends on the

remaining number of service phases or more generally on the remaining service time. This information might

also be complicate to obtain in practice.

To overcome these difficulties, we propose a numerical analysis to obtain the performance measures under

a two-thresholds policy where the thresholds do not depend on the remaining service time. Although the

proposed policy is not optimal, it is simple to implement and may lead to enhanced performance compared

to a one-threshold policy based on the number of customers in the system. Moreover, compared to the

Coxian approximation followed by a Matrix geometric approach, the method developed here leads to the

exact performance measures for any service time distribution.

We denote by k+ and k− the thresholds on the system size after an arrival or a service. After an arrival

(respectively a service) customers are rejected if there is strictly more than k+ (respectively k−) customers
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in the system. The approach proceeds in a way very similar to the case with infinite thresholds in Section 2.

Yet, the analysis does not lead to explicit expressions. Due to the two thresholds, the stationary probabilities

at departure instants can be computed directly since they are in finite number. The transition matrix is

given by

M =



β0 β1 β2 β3 β4 · · · · · · · · · 1−
k+−1∑
n=0

βn

α0 α1 α2 α3 α4 · · · · · · · · · 1−
k+−1∑
n=0

αn

0 α0 α1 α2 α3 · · · · · · · · · 1−
k+−2∑
n=0

αn

0 0 α0 α1 α2 · · · · · · · · · 1−
k+−3∑
n=0

αn

...
. . .

. . .
. . .

. . .
. . . · · · · · ·

...

0 · · · · · · · · · α0 α1 · · · · · · 1−
k+−k−∑
n=0

αn

0 · · · · · · · · · 0 1 0 · · · 0

0 · · · · · · · · · 0 0 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . . · · ·

...

0 · · · · · · · · · · · · · · · · · · 1 0



.

The first k−+1 lines of the matrix are identical to those in the matrix in Section 2.1 except that the number

of customers after a service completion is bounded by k+. From line k− + 2 to line k+ + 1, there cannot

be any arrival during a service because the first arrival after the service completion cannot occur. So, the

number of customers is forced to be reduced by one at the next service completion. One can then solve the

system P = P ·M , where P = (p0, p1, · · · , pk+) with
k+∑
n=0

pn = 1 to obtain the stationary distribution of

the system size at departure instants. In Proposition 7, we relate these probabilities to those at arbitrary

instants.

Proposition 7 We have

πn,+ = (1− π0)
G∗(λ−)

λ+x
pn, and πn,− = (1− π0)

1−G∗(λ−)

λ−x
pn,

for 1 ≤ n ≤ k−, and

πn,+ =
1− π0
λ+x

pn, πn,− = (1− π0)pn, and πk++1,+ = 1−

π0 + k+∑
n=1

πn,+ + πn,−

 ,

for k− + 1 ≤ n ≤ k+.

27



Proof. Contrary to Section 2.2, the system is not identical at arrival instants and departure instants but it

is identical at arrival instants of customers who join and departure instants. Therefore, we have

p0 =
λ−π0

λ−
k−∑
k=0

πk,− + λ+
k+∑
k=1

πk,+

, (47)

pn =
λ−πn,− + λ+πn,+

λ−
k−∑
k=0

πk,− + λ+
k+∑
k=1

πk,+

, for 1 ≤ n ≤ k−, and (48)

pn =
λ+πn,+

λ−
k−∑
k=0

πk,− + λ+
k+∑
k=1

πk,+

, for k− + 1 ≤ n ≤ k+. (49)

Due to flow conservation, one may write λ−
k−∑
k=0

πk,− +λ+
k+∑
k=1

πk,+ = 1
x (1− π0). So, we deduce from Equation

(47) that π0 = p0

p0+λ−x . The throughput of served customers is hence λ−

p0+λ−x .

Similarly to the proof of Lemma 1, p(n, r,+) and p(n, r,−) obey the following differential equations:

p′(1, r,+) = λ+p(1, r,+)− λ−π0g(r), (50)

p′(n, r,+) = λ+p(n, r,+)− λ−p(n− 1, r,−)− λ+p(n− 1, r,+), for 2 ≤ n ≤ k− + 1, (51)

p′(n, r,−) = λ−p(n, r,−)− g(r)(p(n+ 1, 0,+) + p(n+ 1, 0,−)), for 1 ≤ n ≤ k−, (52)

p′(n, r,+) = λ+p(n, r,+)− λ+p(n− 1, r,+), for k− + 2 ≤ n ≤ k+, (53)

p′(n, r,−) = −g(r)(p(n+ 1, 0,+) + p(n+ 1, 0,−)), for k− + 1 ≤ n ≤ k+ − 1, (54)

p′(k+ + 1, r,+) = −λ+p(k+, r,+), (55)

p′(k+, r,−) = −g(r)p(k+ + 1, 0,+). (56)

By integrating Equations (51) and (52) for r from 0 to ∞ and summing up the two obtained equations, we

deduce that p(n, 0,+)+ p(n, 0,−)− λ+πn−1,+ − λ−πn−1,− is a constant for 2 ≤ n ≤ k− + 1. With the same

approach with Equations (53) and (54), we deduce that p(n, 0,+) + p(n, 0,−) − λ+πn−1,+ is equal to the

same constant for k−+2 ≤ n ≤ k+. Using Equations (53) and (56), proves that this constant is also equal to

p(k++1, 0,+)−λ+πk+,+. Finally, Equation (55), leads to p(k++1, 0,+) = λ+πk+,+. So, the aforementioned

constant is 0. As a conclusion, we may write

p(n, 0,+) + p(n, 0,−) = λ+πn−1,+ + λ−πn−1,−, for 2 ≤ n ≤ k− + 1,

p(n, 0,+) + p(n, 0,−) = λ+πn−1,+, for k
− + 2 ≤ n ≤ k+,

p(k+ + 1, 0,+) = λ+πk+,+.
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Combining this last set of equations with Equations (52) and (54), we get p(n, 0,−) = λ+πn,+, for 1 ≤ n ≤

k−.

With the same approach as in Proposition 1 with Equation (52), we then deduce that πn,− = λ+

λ−
1−G∗(λ−)
G∗(λ−) πn,+,

for 1 ≤ n ≤ k−. Using Equation (48), yields

πn,+ = (1− π0)
G∗(λ−)

λ+x
pn, and πn,− = (1− π0)

1−G∗(λ−)

λ−x
pn,

for 1 ≤ n ≤ k−. From Equation (49), we get

πn,+ =
1− π0
λ+x

pn,

for k−+1 ≤ n ≤ k+. From Equation (54), we may write p′(n, u,−) = −g(u)λ+πn,+, for k−+1 ≤ n ≤ k+−1.

Integrating this equation for u from r to ∞, we get p(n, r,−) = λ+πn,+P (S > r). We integrate again this

equation for r from 0 to ∞. This leads to πn,− = λ+xπn,+, for k
− + 1 ≤ n ≤ k+ − 1. So,

πn,− = (1− π0)pn,

for k− + 1 ≤ n ≤ k+. The last probability, πk++1,+, is given by πk++1,+ = 1−

(
π0 +

k+∑
n=1

πn,+ + πn,−

)
. 2

Numerical Illustration. In Figures (4(a)) and (4(b)), we represent the performances measures as a function

of k− and k+ for three different values for k+ − k− and an hyperexponential distribution for the service

time with 2 rates µ1 and µ2 and a probability q to be served with rate µ1. In this example, the optimal

thresholds to answer the optimization problem are k+ = 3 and k− = 2. Again, it illustrates a case where the

two-thresholds policy achieves a better solution to the optimization problem than the one-threshold policy.8
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Fig. 4 Performance measures (λ+ = 0.8, λ− = 0.1, q = 1/3, µ1 = 0.5, µ2 = 2, E(Q) = 0.3)

8 Yet, we do not claim that the two-thresholds policy is optimal in this case.
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5 Future Research

Many questions following this study are open for future research. For instance, it would be interesting to

include other features for the customer’s behavior like abandonment or workload-dependency. We could also

consider a multi-server queue instead of a single-server one. This however would not change the results since

the observation of a change in the queue size would only occur when all agents are busy. Another extension

of the model is the possibility of a customer’s decision not only based on the last event but on a larger finite

number of events. Finally, it could also be interesting to consider the symmetrical case where the server

adapts its service rates to the last realized event.
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Notations

Table 1 Notations

Exogenous parameters

λ+, λ− Arrival rates after an arrival and after a service
S Random variable which represents the service time duration
x Expected service time
cv Coefficient of variation of the service time distribution; it is the ratio of

the standard deviation divided by the expected value
g(.) Probability density function of the service time
G∗(.) Laplace-Stieltjes Transform (LST) of the service time;

G∗(s) =
∫∞
0
g(t)e−st dt

Decision parameters

k+, k− Thresholds on the system size or on the remaining number of service phases
to accept or reject customers at arrival after an arrival or a service

p̃+, p̃− Probabilities that an arriving customer accepts to join
after an arrival or a service

Probabilities

pt(n, r,+), pt(n, r,−) Probability-density of having n customers in the system, n ≥ 1 and a
remaining service time of r, r ≥ 0, at time t after an arrival or a service

p(n, r,+), p(n, r,+) p(n, r,+) = lim
t→∞

pt(n, r,+), p(n, r,−) = lim
t→∞

pt(n, r,−) for n ≥ 1

πn,+, πn,− Stationary probability to have n customers in the system at arbitrary
instants after an arrival or a service (πn,+ =

∫∞
r=0

p(n, r,+)dr,
πn,− =

∫∞
r=0

p(n, r,−) dr for n ≥ 1)
πn Stationary probability to have n customers in the system at arbitrary

instants,πn = πn,+ + πn,− for n ≥ 0
pn,+, pn,− Stationary probability to have n customers in the system at departure

instants after an arrival or a service for n ≥ 0
pn Stationary probability to have n customers in the system at departure

instants, pn = pn,+ + pn,− for n ≥ 0

r+n , r
−
n Expected remaining service time seen by a customer who arrives after

an arrival or a service with n customers present in the system, n ≥ 1.
αn, βn Probability that n customers arrive during a service if the service

is initiated by a service completion or by an arrival, n ≥ 0

Performance measures

E(Qd), E(Q) Expected number of customers in the system at departure
and arbitrary instants

E(Q) Service level objective on E(Q)
E(W ) Expected waiting time at arbitrary instants
Ts Expected throughput of served customers

E(W+), E(W−) Expected waiting time of a customer who arrives after an arrival
or a service

E(R) Expected remaining service time seen by an arriving customer at a
non-empty system

E(R+), E(R−) Expected remaining service time seen by a customer who arrives
after an arrival or a service

Markov decision process

V +
n (x), V −

n (x) Value function depending on the state of the system
µj Exponential rate of remaining service phase j in the Coxian

distribution (1 ≤ j ≤ N)
rj Probability to enter remaining service phase j − 1 after leaving

remaining service phase j (1 ≤ j ≤ N) in the Coxian distribution
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